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Abstract
It is widely acknowledged that the biomedical literature suffers from a surfeit of false positive results. Part
of the reason for this is the persistence of the myth that observation of p < 0.05 is sufficient justification
to claim that you have made a discovery. It is hopeless to expect users to change their reliance on p-values
unless they are offered an alternative way of judging the reliability of their conclusions. If the alternative
method is to have a chance of being adopted widely, it will have to be easy to understand and to calculate.
One such proposal is based on calculation of false positive risk(FPR). It is suggested that p-values and
confidence intervals should continue to be given, but that they should be supplemented by a single
additional number that conveys the strength of the evidence better than the p-value. This number could be
the minimum FPR (that calculated on the assumption of a prior probability of 0.5, the largest value that can
be assumed in the absence of hard prior data). Alternatively one could specify the prior probability that it
would be necessary to believe in order to achieve an FPR of, say, 0.05.
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1. Introduction

It is a truth universally acknowledged that some areas of science
suffer from a surfeit of false positives.

By a false positive, I mean that you claim that an effect exists
when in fact the results could easily have occurred by chance
only.

Every false positive that gets published in the peer-reviewed
literature provides ammunition for those who oppose science.
That has never been more important. There is now strong
pressure from within science as well as from those outside it,
to improve reliability of the published results.

In the end, the only way to solve the problem of reproducibil-
ity is to do more replication and to reduce the incentives that are
imposed on scientists to produce unreliable work. The publish-
or-perish culture has damaged science, as has the judgment of
their work by silly metrics.

In the meantime, improvements in statistical practice can
help.

In this article, I am referring to the practice of experimental-
ists, and to the statistical advice given by journal editors, when
they do not have a professional statistician has part of the team.
The vast majority of published tests of significance are in this
category.

The aim is to answer the following question. If you observe
a “significant” p-value after doing a single unbiased experiment,
what is the probability that your result is a false positive? In this
article, we expand on the proposals made by Colquhoun (2017,
2018) and compare them with some other methods that have
been proposed.

CONTACT David Colquhoun d.colquhoun@ucl.ac.uk University College London, London WC1E 6BT, UK.
*https:// arxiv.org/ abs/ 1802.04888

2. How Can Statistical Practice by Users and Journals
Be Changed?

In the biomedical literature, it is still almost universal to do a test
of statistical significance, and if the resulting p-value is less than
0.05 to declare that the result is “statistically significant” and to
conclude that the claimed effect is likely to be real, rather than
chance. It has been known for many decades that this procedure
is unsafe. It can lead to many false positives.

Many users still think that the p-value is the probability that
your results are due to chance (Gigerenzer, Krauss, and Vitouch
2004). That, it seems, is what they want to know. But that is not
what the p-value tells you.

There can be no doubt that the teaching of statistics to users
has failed to improve this practice.

The standard approach in teaching, of stressing the formal
definition of a p-value while warning against its misinterpre-
tation, has simply been an abysmal failure. (Sellke, Bayarri
and Berger 2001, p. 71)

The ASA statement (Wasserstein and Lazar 2016) gave a
cogent critique of p-values. But it failed to come to any conclu-
sions about what should be done. That is why it is unlikely to
have much effect on users of statistics. The reason for the lack
of recommendations was the inability of statisticians to agree.
In the opening words of Kristin Lennox, at a talk she gave at
Lawrence Livermore labs,

Today I speak to you of war. A war that has pitted statisti-
cian against statistician for nearly 100 years. A mathematical
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conflict that has recently come to the attention of the “nor-
mal” people. (Lennox 2016)

I suggest that the only hope of having the much-needed
improvement in statistical practice is to adopt some sort of
compromise between frequentist and Bayesian approaches. A
good candidate for this is to convert the observed p-value to the
false positive risk (FPR). This should appeal to users because the
FPR is what most users still think that p-values give them. It is
the probability that your result occurred by chance only, a very
familiar concept.

There is nothing very new about “recalibrating” p-values,
such that they mean what users mistakenly thought they mean.
Various ways of doing this have been proposed, notably by
Berger and Sellke (1987), Sellke et al. (2001), Goodman (1993,
1999a,b) and by Johnson (2013a,b).

The misinterpretation of p-values is, of course, only one of
the widespread misunderstandings of statistics. It is relatively
easy to teach users about the hazards of multiple comparisons
and the problem of p-hacking. It seems to be much harder to
teach what a p-value tells you and what it does not tell you.
The abuse of p < 0.05 is still almost universal, at least in the
biomedical literature. Journals still give ghastly advice like

a level of probability (p) deemed to constitute the threshold
for statistical significance should be defined in Methods,
and not varied later in Results (by presentation of multiple
levels of significance). Thus, ordinarily p < 0.05 should be
used throughout a paper to denote statistically significant
differences between groups. (Curtis et al. 2014)

Many people have advised culture change. Desirable though
that is, such pleading has had very little effect. Others have
said that authors should ask a professional statistician. That
is obviously desirable too, but there are nowhere near enough
statisticians to make that possible, and especially not enough
statisticians who are willing to spend time analyzing your data.

The constraints on improvement are as follows.

1. Users will continue to use statistical tests, with the aim of
trying to avoid making fools of themselves by publishing false
positive results. That is entirely laudable.

2. Most users will not have access to professional statistical
advice. There just is not enough of it (in a form that users
can understand, and put into practice).

3. The only way to stop people claiming a discovery whenever
they observe p < 0.05 is to give them an alternative proce-
dure.

4. Full Bayesian analysis will probably never be adopted as a
routine substitute for p-values. It has a place in formal clinical
trials that are guided by a professional statistician, but it is
too complicated for most users, and experimentalists distrust
(rightly, in my view) informative priors. As Valen Johnson
said

…subjective Bayesian testing procedures have not been -
and will likely never be- generally accepted by the scien-
tific community. (Johnson 2013a,b)

A special case of Bayesian analysis, the false positive risk
approach, is simple enough to be widely understood and allows

the p-value to be supplemented by a single number that gives a
much better idea of the strength of the evidence than a p-value
alone.

3. The False Positive Risk Approach

I will consider here only the question of how to avoid false
positives when interpreting the result of a single unbiased test
of significance. All the other problems of multiple comparisons,
inadequate randomization or blinding, p-hacking, etc. can only
make matters still worse in real life.

To proceed, we need to define more precisely “the probability
that your results are due to chance.” This should be defined
as the probability, in the light of the p-value that you observe,
you declare that an effect is real, when in fact, it is not. It is
the risk of getting a false positive. This quantity has been given
various names. For example, it has been called the false positive
report rate (FPRP) by Wacholder et al. (2004) though they used
the p-less-than approach (see Colquhoun 2017, sec. 3) which is
inappropriate for interpretation of single tests. It was called the
false discovery rate by Colquhoun (2014, 2016a,b)— this was a
foolish choice because it risks confusion with the use of that term
in the context of multiple comparison problems (e.g., Benjamini
and Hochberg, 1995). A better term is the false positive rate, or,
better still, false positive risk. The latter term was recommended
by Prof. D. Spiegelhalter (personal communication), because we
are talking about interpretation of a single experiment: we are
not trying to estimate long-term error rates.

It should be noted that corrections for multiple comparisons
aim to correct only the type 1 error rate. The result is essentially
a corrected p-value and is, therefore, open to misinterpretation
in the same way as any other p-value.

In order to calculate the FPR, it is necessary to invoke Bayes’
theorem. This can be expressed in terms of odds as follows:

posterior odds on H1 = Bayes factor × prior odds (1)

Or, in symbols,

P(H1|data)
P(H0|data)

= P(data|H1)

P(data|H0)
× P(H1)

P(H0)
(2)

where H0 is the null hypothesis and H1 is the alternative hypoth-
esis.

The bad news is that there are many ways to calculate the
Bayes factor (see, e.g., Held and Ott, 2018). The good news is
that many of them give similar results, within a factor of 2 or
so, so whichever method is used, the conclusions are not likely
to differ much in practice. In order to simulate t-tests (e.g., as
in Colquhoun 2014), it is necessary to specify an alternative
hypothesis,for example, that the true effect size is 1 standard
deviation. As we shall see below (Section 5, Figure 1), this does
not reduce the generality of the conclusions as much as it might
appear at the first sight. Thus, we choose to test

H0 : θ = 0 against H1 : θ = θ1 �= 0

One advantage of using a simple alternative hypothesis is that
the Bayes factor becomes a simple likelihood ratio, and there
is no need to postulate a prior distribution, but rather a simple
prior probability suffices: P(H1) = 1 − P(H0) is the probability
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that there is a real (nonzero) effect size. Thus, Equation (2) can
be written as

P(H1|data)
1 − P(H1|data)

= L10 × P(H1)

1 − P(H1)
(3)

where the likelihood ratio in favor of H1, relative to H0, is
defined as L10 (following the notation of Held and Ott 2018).

L10 = P(data|H1)

P(data|H0)
(4)

It has often been argued that the likelihood ratio alone is
a better way than a p-value to represent the strength of evi-
dence against the null hypothesis, for example, Goodman (1993,
1999a,b).

It would indeed be a big advance if likelihood ratios were
cited, instead of, or as well as, p-values. One problem with this
proposal is that very few nonprofessional users of statistics are
familiar with the idea of likelihood ratios as evidence. Another
problem is that it is hard to judge how big the likelihood ratio
must be before it is safe to claim that you have good evidence
against the null hypothesis. It seems better to specify the result
as an FPR, if only because that is what most users still think, mis-
takenly, that that is what the p-value tells them (e.g., Gigerenzer,
Krauss, and Vitouch 2004). The idea is already familiar to users.
That gives it a chance of being adopted. The FPR is

P(H0|data) = 1 − P(H1|data)

so, from Equations (3) and (4), we get

FPR = 1
1 + L10

P(H1)
1−P(H1)

. (5)

Thus, in the case where the prior probability, P(H1) =
0.5, the FPR is seen to be just another way of expressing the
likelihood ratio:

FPR = 1
1 + L10

.

Notice that we have chosen to write the likelihood ratio as
the odds on H1. The bigger the value, the more probable is the
data given H1, relative to H0. Often the likelihood ratio is written
the other way up, as L01 = 1/L10, so large values favor H0.
References to minimum values of L01—the smallest evidence
for H0—are, therefore, equivalent to maximum values for L10,
the greatest evidence for there being a real nonzero effect that is
provided by the data.

In the case of a simple alternative hypothesis, the likelihood
ratio can be calculated in two different ways: the p-equals
approach or the p-less-than approach (e.g. Goodman 1993,
1999b, and sec. 3 in Colquhoun, 2017). Once the experiment is
done, the p-value that it produces is part of the observations. We
are interested only in the particular p-value that was observed,
not in smaller p-values that were not observed. Since the aim
of this work is to interpret a single p-value from a single
experiment (rather than trying to estimate the long term error
rate), the p-equals method is the appropriate way to calculate
likelihood ratios.

For small samples, for which a t-test is appropriate, the
likelihood ratio can be calculated as a ratio of probability den-
sities (see the appendix). The effect of sample size on FPR was
investigated by Colquhoun (2017).

Bayes’ theorem requires that we specify a prior probability
and in the vast majority of cases, we do not know what it is. But
I don’t think that that means we have to give up on the FPR.

There are two ways to circumvent the inconvenient fact that
we cannot give a value for the prior probability that there’s a real
effect. One is to assume that the prior probability of a real effect,
P(H1), is 0.5, that is, that there is a 50:50 chance of there being
a real effect before the experiment was done. The other way is
to calculate the prior that you would need to believe in order to
achieve an FPR of, say 5%. This so-called reverse Bayes approach
was mentioned by Good (1950) and has been used, for example,
by Carlin and Louis (1996), Matthews (2001, 2018), Held (2003)
and Colquhoun (2017, 2018). In both cases, it would be up
to you to persuade your readers and journal editors that the
value of the prior probability is reasonable. Inductive inference
inevitably has an element of subjectivity (Colquhoun 2016).

The proposal to specify the FPR is likely to be more accept-
able to users than most because it uses concepts which are
familiar to most users. It starts by calculating p-values and uses
the familiar point null hypothesis. The idea of prior probability
can be explained via diagnostic screening tests and the results
can be explained to users by simulation of tests (e.g., Colquhoun
2014).

Exact calculations can be done using R programs (Colquhoun
2017), or with a web calculator (Colquhoun and Longstaff 2017).
The variables involved are the observed p-value, the FPR, and
the prior probability that there is a real effect. If any two of these
are specified, the third can be calculated. The calculations give
the same FPR if the number of observations and the normalized
effect size are adjusted to keep the power constant (Figure 1 and
Colquhoun 2017), so when doing the calculations these should
be chosen to match the power of your experiment: see Section 5.

4. The Point Null

Some people do not like the assumption of a point null that
is made in this proposed approach to calculating the FPR, but
it seems natural to users who wish to know how likely their
observations would be if there were really no effect (i.e., if
the point null were true). It is often claimed that the null is
never exactly true. This is not necessarily so (just give identical
treatments to both groups). But more importantly, it does not
matter. We are not saying that the effect size is exactly zero: that
would obviously be impossible. We are looking at the likelihood
ratio, that is, at the probability of the data if the true effect size
were not zero relative to the probability of the data if the effect
size were zero. If the latter probability is bigger than the former
then clearly we cannot be sure that there is anything but chance
at work. This does not mean that we are saying that the effect
size is exactly zero. From the point of view of the experimenter,
testing the point null makes total sense. In any case, it makes
little difference if the null hypothesis is a narrow band centered
on zero (Berger and Delampady 1987).

5. The Simple Alternative Hypothesis

It was stated above that the need to specify a fixed alternative
hypothesis is not as restrictive as it seems at first. This is the
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Figure 1. Plot of FPR against normalized effect size, with power kept constant
throughout the curves by varying n. The dashed blue line shows the FPR calculated
by the p-less-than method. The solid blue line shows the FPR calculated by the p-
equals method. This example is calculated for an observed p-value of 0.05, with
power kept constant at 0.78 (power calculated conventionally at p = 0.05), with
prior probability P(H1) = 0.5. The sample size needed to keep the power constant
at 0.78 varies from n = 1495 at effect size = 0.1, to n = 5 at effect size = 2.0
(the range of plotted values). The dotted red line marks an FPR of 0.05, the same as
the observed p-value. Calculated with Plot-FPR-v-ES-constant-power.R, output file:
FPR-vs-ES-const-power.txt (supplementary material).

case because FPR is essentially independent of the effect size
if the power of the experiment is constant. This is illustrated
in Figure 1, which shows the result of plotting FPR against the
true normalized effect size. In this graph, the power is kept
constant by changing the sample size, n, for each point. The
power is calculated in the standard way, for the normalized effect
size and p = 0.05. When the FPR is calculated by the p-less-
than method, it is exactly independent of the effect size. When
the FPR is calculated by the p-equals method, as is appropriate
for our problem, the FPR is essentially independent of effect
size up to an effect size of about 1 (standard deviation) and
declines only slightly for larger effects. This is the basis for the
recommendation that the inputs for the calculator should match
the power of the actual experiment.

6. The Jeffreys–Lindley “Paradox”

It may be surprising, at first sight, that the FPR approaches 100%
as the sample size is increased when it is calculated by the p-
equals method, whereas the FPR decreases monotonically with
sample size when it is calculated by the p-less-than method. The
former case is illustrated in Figure 2. As sample size increases,
the evidence in favor of the null hypothesis declines at first but
then increases.

This phenomenon is an example of the Jeffreys–Lindley
“paradox” (Lindley 1957; Bartlett 1957).

It can be explained intuitively as follows.
It is convenient to use the web calculator at http://fpr-calc.

ucl.ac.uk/. The third radio button shows that for p = 0.05, and

Figure 2. FPR plotted against n, the number of observations per group for a two
independent sample t-test, with normalized true effect size of 1 standard deviation.
The FPR is calculated by the p-equals method, with a prior probability P(H1) = 0.5
(Equation A6). Log–log plot. Calculations for four different observed p-values, from
top to bottom these are: p = 0.05 (blue), p = 0.01 (green), p = 0.001 (red), p =
0.0001 (orange). The power of the tests varies throughout the curves. For example,
for the p = 0.05 curve, the power is 0.22 for n = 4 and power is 0.9999 for n = 64
(the extremes of the plotted range). The minimum FPR (marked with gray-dashed
lines) is 0.206 at n = 8. This may be compared with the FPR of 0.27 at n = 16, at
which point the power is 0.78 (as in Colquhoun, 2014, 2017). Values for other curves
are given in the print file for these plots (Calculated with Plot-FPR-vs-n.R. Output file:
Plot-FPR-vs-n.txt. supplementary material).

normalized effect size of 1, a sample of 16 observations in each
group gives a power of 0.78. That is usually considered to be
a well-powered experiment. Many published experiments have
much lower power. For an observed p-value of 0.05, the FPR
for n = 16 and a prior of 0.5 is 27% when calculated by the
p-equals method. This is one way of looking at the weakness
of the evidence against the null hypothesis that is provided
by observing p = 0.05 in a single well-powered experiment.
Another way is to note that the likelihood ratio in favor of there
being a real effect (null hypothesis being untrue) is only about
3 to 1 (2.76, see Colquhoun 2017, sec. 5.1). This is much less
than the odds of 19:1 that are often wrongly inferred from the
observed p = 0.05.

Now to explain the apparent paradox. If the sample size is
increased from 16 to 64, keeping everything else the same, the
FPR increases from 0.78 (at n = 16) to 0.996 (at n = 64)
when calculated by the p-equals method, that is, observation of
p = 0.05 when n = 64 provides strong evidence for the null
hypothesis. But notice that this sample size corresponds to a
power of 0.9999, far higher than is ever achieved in practice. The
reason for the increased FPR with n = 64 can be understood by
looking at the corresponding likelihood ratios. If the calculation
for n = 64 is done by the p-less-than method, the likelihood
ratio is 20.0—quite high because most p-values will be less than
0.05 in this situation. But the likelihood ratio found by the p-
equals method has fallen from 2.76 for n = 16, to 0.0045 for
n = 64. In words, the observation (of p = 0.05) would be
222 times as likely (1/0.0045) if the null hypothesis were true

http://fpr-calc.ucl.ac.uk/
http://fpr-calc.ucl.ac.uk/
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than it would be if the null hypothesis were false. So observing
p = 0.05 provides strong evidence for the null hypothesis in this
case. The reason for this is that with n = 64 it is very unlikely
that a p-value as big as 0.05 would be observed: 99.99% of p-
values are less than 0.05 (that is the power), and 98.7% of p-
values are less than 0.001 (found using the R script two_sample-
simulation-+LR.R: supplementary material). With a power of
0.9999, it would be very suspicious indeed to observe a p-value
as big as 0.05.

The resolution of this problem is given in Appendix A4 of
Colquhoun (2017), and in the Notes tab of the calculator. Make
sure that the power matches that of your experiment. If you use
a silly power, you will get a silly answer.

7. Some Alternative Proposals

The suggestion made here is one of several that have been made
with the aim of expressing evidence in ways that do not suffer
from the same problems as p-values. They are all based on nor-
mal distributions apart from the present proposal (Colquhoun
2014, 2017) which is based on Student’s t distribution so that its
results are appropriate for the small samples that typify most lab
work.

1. Many authors have proposed replacement of null hypothesis
testing with full Bayesian analysis. These have their place in,
for example, large clinical trials with a professional statistical
advisor. But they are unlikely to replace the p-value in routine
use for two reasons. One is that experimenters will probably
never trust the use of informative prior distributions that are
not based on hard evidence. The other is that the necessity
to test a range of priors makes statement of the results too
lengthy and cumbersome for routine use in papers that often
cite many p-values.

2. Senn (2015) has produced an example in which the FPR is
close to the p-value. This uses a smooth prior distribution,
rather than the lumped prior used here, and has, so far,
been demonstrated only for one-sided tests. This result differs
from the results obtained by simulation of repeated t-tests
(Colquhoun 2014) and is in contrast with the general view
that the FPR is bigger, often much bigger, than the p-value.

3. It has been proposed, as an interim way to reduce the risk
of false positives, that the threshold for significance should
be reduced from 0.05 to 0.005 (Benjamin et al. 2017). This
proposal has the huge disadvantage that it perpetuates the
dichotomization into “significant” and “nonsignificant.” And
even p = 0.005 is not safe for implausible hypotheses (see
Colquhoun 2017, sec. 9 and Table 1). The value of p = 0.005
proposed by Benjamin et al. (2017) would, in order to achieve
an FPR of 5%, require a prior probability of real effect of about
P(H1) = 0.4 (from the web calculator, with power = 0.78). It
is, therefore, safe only for plausible hypotheses. If the prior
probability were only P(H1) = 0.1, the FPR with p =
0.005 would be 24% (from the web calculator: Colquhoun
and Longstaff 2017). It would still be unacceptably high even
with p = 0.005. In order to reduce the FPR to 5% with a
prior probability of P(H1) = 0.1, we would need to observe
p = 0.00045. This conclusion differs from that of Benjamin
et al. (2017) who say that the p = 0.005 threshold, with

prior = 0.1, would reduce the FPR to 5% (rather than 24%).
This is because their calculation is based on the p-less-than
interpretation which, in my opinion, is not the correct way to
look at the problem (see Colquhoun 2017, sec. 3).

4. Matthews (2018) proposed a more sophisticated version of
the reverse Bayesian proposal made here. He shows that, in
the case where there is no objective prior information, the
observation of p = 0.013 implies 95% credibility, in the
Bayesian sense (though Matthews does not suggest that this
should be used as a revised threshold value). This can be
compared with the approach of Colquhoun (2017) which says
that when you observe p = 0.013 that you would need a
prior probability of there being a real effect of 0.61 to achieve
an FPR of 0.05 (with the default inputs, power = 0.78).
Or alternatively (using the third radio button on the web
calculator), that the FPR is 7.7% for a prior of 0.5.

In practice there is not much difference between a prior
of 0.61 and 0.5 (or between an FPR of 7.7% and 5%), and
to that extent both approaches give similar answers. But my
approach would give a much bigger FPR for implausible
hypotheses (those with priors, P(H1), less than 0.5), but
Matthews (2018) would deal with implausible hypotheses in
a different way.

5. Bayesian approaches which use a prior distribution that is
most likely to reject the null hypothesis. These include Berger
and Sellke (1987) and Sellke et al. (2001)—(see the appendix),
and V. Johnson’s uniformly most powerful Bayesian tests
(Johnson 2013a,b), For example, if we observe p = 0.05,
Berger et al. find an FPR of 22%–29% and Johnson finds 17%–
25%. These are comparable with the FPR of 27% found here
for a well-powered study with a prior probability of 0.5.

6. Goodman (1999b) has given an expression for calculating the
maximum likelihood ratio in favor of H1 in the case where
samples are large enough that the normal distribution, rather
than Student’s t, is appropriate (see, Equation A9).

Three of these approaches are compared in Figure 3 and in
Table 1.

Figure 3 shows the FPR plotted against the observed p-value.
The solid blue line is calculated as in Colquhoun (2017), for a
well-powered experiment (n = 16, normalized effect size = 1
SD), using the p-equals method, and prior probability P(H1) =
0.5 (Equations A5 and A6). The dashed blue line shows the
FPR calculated by the Sellke–Berger approach (Equations A8
and A6), and the dotted blue line is calculated by the Goodman
approach (Equations A9 and A6). In all cases, the FPR is a great
deal bigger than the p-value (equality is indicated by the dotted
red line). The Goodman approach agrees quite well with that of
Colquhoun (2017) for observed p-values below 0.05, the range
of interest. The Sellke–Berger approach gives larger FPR s over
this range, but does not differ enough that the conclusions would
differ much in practice.

Table 1 shows values calculated for five different observed
p-values, shown in column 1. The second column shows the
corresponding likelihood ratios, calculated as in Colquhoun
(2017), and Equation (A5). These are calculated from the known
effect size and standard deviation, but calculations based on
the observed effect size and sample standard deviation are sim-
ilar, especially for p-values below 0.01 (see Colquhoun 2017,
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Figure 3. Comparison of three approaches to calculation of FPR in the case of
a simple alternative hypothesis. Solid blue line: the p-equals method for t-tests
described in Colquhoun (2017), and Equations (A5) and (A6). Dashed blue line:
the Sellke–Berger approach, using Equations (A8) and (A6). Dotted blue line: the
Goodman approach, calculated using Equations (A9) and (A6). Dotted red line is
where points would lie if FPR was equal to the p-value. This example is calculated
for n = 16, normalized effect size = 1 and prior probability P(H1) = 0.5. Log–log
plot. Calculated with Plot-FPR-vs-Pval+Sellke-Goodman.R (supplementary material).

sec. 5.1). For example, the last row of Table 1 shows that if you
observed p = 0.001, the likelihood ratio in favor of H1 would be
100, which would normally be regarded as very strong evidence
against the null hypothesis. However, this is not necessarily true.
If the prior probability P(H1) were only 0.1, then Table 1 shows
that the FPR would be 0.08, still bigger that the conventional 5%
value. In this case, you would need to observe p = 0.00045 in
order to achieve an FPR of 0.05 (e.g., using radio button 2 on the
calculator at http://fpr-calc.ucl.ac.uk/)

The third column of Table 1 shows the result of the reverse
Bayesian approach, proposed by Matthews (2001) and by
Colquhoun (2017), calculated with Equation (A7). If you
observed p = 0.05, then in order to achieve an FPR = 0.05
you would need to persuade your readers that it was reasonable

to assume a very high prior probability, P(H1) = 0.87, that
the observed effect was not merely chance. It is unlikely that
anyone would believe that in the absence of hard evidence. If
you observed p = 0.005 (penultimate row of Table 1) the prior
needed to achieve FPR = 0.05 would be 0.4, so you would be
safe if the hypothesis was reasonably plausible.

The remaining columns of Table 1 show the FPR s that corre-
spond to each of the p-values in column 1. They are calculated as
described in the appendix, for prior probabilities, P(H1) = 0.5
and for P(H1) = 0.1.

It is gratifying that all three methods of calculating the FPR
give results that are close enough to each other that much the
same conclusions would be drawn in practice. All of them sug-
gest that if you observe p = 0.05 in an unbiased, well-powered
experiment, and you claim a discovery on that basis, you are
likely to be wrong at least 20–30% of the time, and over 70% of
the time if the hypothesis is a priori implausible: (P(H1) = 0.1).

8. Real-Life Examples

Example 1. The data used by Student (1908).

The results in Table 2 are observations made by Cushny
and Peebles (1905) on the sleep-inducing properties of (–)-
hyoscyamine (drug A) and (–)-hyoscine (drug B). These data
were used W. S. Gosset as an example to illustrate the use of his
t-test, in the paper in which the test was introduced (Student,
1908). The conventional t-test for two independent samples is
done as follows (more detail in Colquhoun 1971, sec. 9.4).

Number per sample: nA = 10, nB = 10.

Mean response: drug A: +0.75; drug B + 2.33.

Standard deviations: drug A s(yA) = 1.78901; drug B
s(yB) = 2.002249.

Effect size (difference between means): E = 2.33 − 0.75 =
1.58.

We wish to test whether drug B is really better than A
or whether the results could have plausibly arisen if the null
hypothesis (true difference is zero) were true.

Table 1. Calculations done with web calculator http:// fpr-calc.ucl.ac.uk/ , or with R scripts (see the appendix).

Minimum FPR (mFPR) False positive risk, FPR with
prior = 0.5 prior = 0.1

Observed Likelihood Prior for Colquhoun Sellke–Berger Goodman Colquhoun Sellke–Berger Goodman
p-value ratio: (H1/H0) FPR = 0.05 value value value value value value

0.05 2.8 0.87 0.27 0.29 0.227 0.76 0.79 0.725
0.025 6.1 0.76 0.14 0.20 0.140 0.60 0.69 0.593
0.01 15 0.55 0.061 0.11 0.068 0.37 0.53 0.395
0.005 29 0.40 0.034 0.067 0.037 0.24 0.39 0.259
0.001 100 0.16 0.0099 0.018 0.0088 0.082 0.14 0.074

NOTES: Column 1: The observed p-value.
Column 2: Likelihood ratios (likelihood for there being a real effect divided by likelihood of null hypothesis). Calculated for a well-powered (0.78) experiment, as in
Equation (A5) and Colquhoun (2017).
Column 3: The prior probability of there being a real effect, P(H1), that it would be necessary to postulate in order to achieve an FPR (FPR) of 5%. Calculated for a well-
powered (0.78) experiment as in Equation (A7). (The reverse Bayes approach: Colquhoun 2017).
Columns 4–6: The minimum FPR, that is, the FPR that corresponds to prior probability of P(H1) = 0.5, calculated by three methods, Colquhoun value (calculated for
a well-powered (0.78) experiment as in Equations (A5) and (A6) and Colquhoun (2017). Sellke–Berger value: calculated as in Equations (A8) and (A6). Goodman value,
calculated as in Equations (A9) and (A6).
Columns 7–9. As columns 4–6, but for an implausible hypothesis with prior probability, P(H1) = 0.1.

http://fpr-calc.ucl.ac.uk/
http://fpr-calc.ucl.ac.uk/
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Table 2. Response in hours extra sleep (compared with controls) induced by (–)-
hyoscyamine (A) and (–)-hyoscine (B). From Cushny and Peebles (1905).

Drug A yA Drug B yB

+0.7 +1.9
−1.6 +0.8
−0.2 +1.1
−1.2 +0.1
−0.1 −0.1
+3.4 +4.4
+3.7 +5.5
−0.8 +1.6

0.0 +4.6
+2.0 +3.4

The pooled estimate of the error within groups is

s(y) =
√

(nA − 1)s(yA)2 + (nB − 1)s(yB)2

(nA − 1) + (nB − 1)
= 1.899

Normalized effect size = E/s(y) = 0.83218.

Standard deviation of effect size sE =
√

s(y)2

nA
+ s(y)2

nB
=

0.84909.

Degrees of freedom: (nA − 1) + (nB − 1) = 18.

Student’s t: t18 = E
sE

= 1.8608.

P = 0.07918
The p-value exceeds 0.05 so the difference between means

would conventionally be described as “non-significant.” A very
similar p-value (0.08) is obtained from the same data by the ran-
domization test (Colquhoun 1971, sec. 9.2); or, in more detail,
in Colquhoun (2015), in which all 184,756 ways of selecting 10
observations from 20 are plotted.

This conventional p-value result can now be compared with
the FPR result. This can be done most conveniently by use of
the web calculator (http://fpr-calc.ucl.ac.uk/). The inputs for the
calculator are the p-value (0.07918), the normalized effect size
(0.83218), and the sample size (n = 10). If the prior probability
of a real effect were 0.5, then the minimum FPR (mFPR) would
be 0.28, a lot bigger than the p-value (and it would be bigger
still if the hypothesis were thought to be implausible, that is, if
its prior probability were less than 0.5). Another way to express
the uncertainty is to note that in order to make the FPR 5%,
we would have to postulate a prior probability of there being a
real effect, P(H1) = 0.88. Without strong prior evidence, the
existence of a real effect is very doubtful. A third way to put
the result is to say that the likelihood ratio is only 2.54 so the
evidence of the experiment makes the existence of a real effect
only 2.54 times as likely as it was before the experiment.

The calculator shows also that the power of this study, calcu-
lated for p = 0.05 using the observed response size and standard
deviation is only 0.42.

Example 2. A study of transcranial electromagnetic stimulation.

A study of transcranial electromagnetic stimulation (TMS),
published in Science, concluded that TMS “improved associative
memory performance,” p = 0.043 (Wang et al. 2014).

The authors of this article said only “The increase in per-
formance for baseline to Post-Tx was greater for stimulation
than for sham [T(15) = 2.21, p = 0.043].” The mean raw
scores (numbers of words correctly recalled to associated face
cues) are given in their Table S2 in the supplementary material.
The calculations use the change in score between baseline and
post-treatment. The effect size is the difference in this quantity
between stimulation and sham. From Table S2, the effect size is
1.88 with standard deviation 1.70 (n = 8). The normalized effect
size is, therefore, 1.88/1.70 = 1.10, and the post hoc power is
0.54. Rather than saying only “p = 0.043,” better ways to express
the result of this experiment would be as follows (found from
the web calculator, radio buttons 3, 1, and 2, respectively). In all
cases, the effect size and its confidence interval should be given
in the text, not relegated to the supplementary material.

The increase in memory performance was 1.88 ± 0.85 (stand
deviation of the mean, i.e., standard error) with confidence
interval 0.055–3.7 (extra words recalled on a baseline of about
10). Thus, p = 0.043.

This should be supplemented as follows:
(a) The observation of p = 0.043 implies a minimum FPR (that

for prior probability, P(H1) = 0.5), of at least 18%. This is
the probability that the results occurred by chance only, so
the result is no more than suggestive.

or
(b) The increase in performance gave p = 0.043. In order to

reduce the FPR to 0.05, it would be necessary to assume that
we were almost certain (prior probability, P(H1) = 0.81)
that there was a real effect before the experiment was done.
There is no independent evidence for this assumption so the
result is no more than suggestive.

or
(c) The increase in performance gave p = 0.043. In order

to reduce the minimum FPR to 0.05, it would have been
necessary to observe p = 0.0043, so the result is no more
than suggestive.

Of these options, the first is probably the best because it is the
shortest, and because it avoids the suggestion that FPR = 0.05 is
being suggested as a new “bright line,” in place of p = 0.05.

9. Conclusions

In my proposal, the terms “significant” and “nonsignificant”
would not be used at all. This change has been suggested by
many other people, but these suggestions have had little or no
effect on practice. A p-value and confidence interval would still
be stated but they would be supplemented by a single extra num-
ber that gives a better measure of the strength of the evidence
than is provided by the p-value.

(a) This number could be the minimum FPR, that is, that calcu-
lated on the basis that the prior probability of a real effect is
0.5 (the largest value that it is reasonable to assume without
hard evidence for a higher value: see Colquhoun, 2017, fig.
3). This has the advantage that it is easy to understand. It has
the disadvantage that it is safe only for plausible hypotheses.
Nonetheless, it would be a lot better than giving only the p-
value and confidence interval.

http://fpr-calc.ucl.ac.uk/
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(b) Or the additional number could be the prior probability
that you would need to believe in order to achieve an FPR
of, say, 0.05. This has the disadvantage that most users are
unfamiliar with the idea of prior probabilities, which are,
in most cases subjective probabilities. It also runs the risk
that FPR = 0.05 will become a new “threshold,” in place of
p = 0.05.

Examples of improved ways to express the strength of the
evidence are given above, at the end of Section 8.

I appreciate that my proposal is only one of many ways to
look at the problem of false positives. Other approaches can
give different answers. But it has the virtue of being simple to
understand and simple to calculate. Therefore it has a chance of
being adopted widely.

All the results in this article have been derived in the context
of p-values found from t-tests of the difference between means
of two independent samples. The question of the extent to
which they apply to p-values found in other ways remains to
be investigated. Since the logical flaw in the use of p-values as
a measure of the strength of evidence is the same however they
are derived, it seems likely that the FPRs will be similar in other
situations.

Of course any attempt to reduce the number of false positives
will necessarily increase the number of false negatives. In prac-
tice, decisions must depend on the relative costs (in reputation,
or in money, or both) that are incurred by wrongly claiming a
real effect when there is none, and by failing to detect a real effect
when there is one.

Appendix

In this appendix, we give details of three methods of calculating the
likelihood ratio, hence the FPR, for tests of a point null hypothesis
against a simple alternative.

Appendix A1. The p-equals approach as used by
Colquhoun (2017)

The critical value of the t statistic is calculated from the observed p-
value as

tcrit = qt
(

1 − p
2

, df , ncp = 0
)

(A1)

where qt() is the inverse cumulative distribution of Student’s t statistic
(the notation is as in R). The arguments are the observed p-value, p, the
number of degrees of freedom, df, and the noncentrality parameter, ncp
(zero under the null hypothesis)

Numerical values given in this section all refer to the example shown
in Figure A1 (reproduced from Colquhoun, 2017). In this case p =
0.05, with 30 degrees of freedom so tcrit = 2.04.

Under the null hypothesis the probability density that corresponds
to the observed p-value is

y0 = dt
(
tcrit, df , ncp = 0

)
(A2)

where dt() is the probability density function of Student’s t distribution
with degrees of freedom df and noncentrality parameter = zero under
the null hypothesis. This is the value marked y0 in Figure A1, and in
that example its value is 0.0526.

Figure A1. Definitions for a null hypothesis significance test: reproduced from
Colquhoun (2017). A Student’s t-test is used to analyze the difference between
the means of two groups of n = 16 observations. The t value, therefore, has
2(n − 1) = 30 d.f. The blue line represents the distribution of Student’s t under
the null hypothesis (H0): the true difference between means is zero. The green line
shows the noncentral distribution of Student’s t under the alternative hypothesis
(H1): the true difference between means is 1 (1 SD). The critical value of t for 30
d.f. and p = 0.05 is 2.04, so, for a two-sided test, any value of t above 2.04, or
below −2.04, would be deemed “significant.” These values are represented by the
red areas. When the alternative hypothesis is true (green line), the probability that
the value of t is below the critical level (2.04) is 22% (gold shaded): these represent
false negative results. Consequently, the area under the green curve above t = 2.04
(shaded yellow) is the probability that a “significant”result will be found when there
is in fact a real effect (H1 is true): this is the power of the test, in this case 78%. The
ordinates marked y0 (= 0.526) and y1(= 0.290) are used to calculate likelihood
ratios for the p-equals case.

Under the alternative hypothesis, we need to use the noncentral t
distribution. The noncentrality parameter is

ncp = E
sE

(A3)

where E is the difference between means (1 in the example) and sE is
the standard deviation of the difference between means, 0.354, so ncp =
2.828. The probability density that corresponds with tcrit = 2.04 is

y0 = dt
(
tcrit, df , ncp = 2.828

)
(A4)

In the example in Figure A1, this is y1 = 0.290.
The likelihood of a hypothesis is defined as a number that is directly

proportional to the probability of making the observations when the
hypothesis is true. For the p-equals case, we want the probability that
the value of t is equal to that observed. This is proportional to the prob-
ability density that corresponds to the observed value. (More formally,
the probability is the area of a narrow band centered on the observed
value, but we can let the width of this band go to zero.) For a two-sided
test, under the null hypothesis the probability occurs twice, once at
t = −2.04 and once at +2.04. Thus, under the p-equals interpretation,
the likelihood ratio in favor of H1 is

L10 = L(H1)
L(H0)

= Prob(data|H1)
Prob(data|H0)

= y1
2y0

(A5)

In the example in Figure A1, the likelihood ratio is 0.290/(2 ×
0.0526) = 2.76. The alternative hypothesis is 2.76 times more likely
than the null hypothesis.
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The likelihood ratio can be expressed as an FPR via Equation (5) in
the text

FPR = 1

1 + L10
P(H1)

1 − P(H1)

(A6)

The reverse Bayes approach expresses the result as the prior proba-
bility, P(H1), that would be needed to get a specified FPR. This can be
found by solving Equation (A6) for P(H1)

P(H1) = (1 − FPR)

(1 − FPR + L10FPR)
(A7)

Appendix A2. The Sellke–Berger approach

Sellke et al. (2001) proposed to solve the problem of the unknown prior
distribution by looking for an upper bound for the likelihood ratio for
H1 relative to H0. Expressed as a function of the observed p-value, they
suggest

L10 = 1
−ep log(p)

(A8)

(this holds for p < 1/e, where e = 2.71828 . . .). This is the largest odds
in favor of rejection of the null hypothesis, H0, that can be generated
by any prior distribution, whatever its shape. It is the choice that most
favors the rejection of the null hypothesis. It turns out that nevertheless,
it rejects the null hypothesis much less often than the p-value. As before,
the likelihood ratio from Equation (A8) can be converted to an FPR via
Equation (A6), or to the reverse Bayes approach with Equation (A7).

For the case where the prior probability of having a real effect is
P(H1) = P(H0) = 0.5, this can be interpreted as the minimum false
discovery rate (Sellke et al. 2001). It gives the minimum probability that,
when a test is ‘significant’, the null hypothesis is true, that is, it is an
estimate of the minimum FPR.

The FPR can be calculated by substituting the likelihood ratio from
Equation (A8) into Equation (A6), and the reverse Bayesian calculation
of P(H1) can be found by substituting this FPR into Equation (A7).

Appendix A3. The Goodman approach

For large samples, such that the t distribution is well approximated
by the normal distribution, Goodman (1999b) gives the maximum
likelihood ratio in favor of H1 as

L10 = 1
2 exp(−z2/2)

(A9)

(This is the likelihood ratio calculated at the sample mean, the
maximum likelihood estimate of the true effect size.)

In Equation (A9), z is the observed standard normal deviate, which
is related to the observed p-value, according to

z = qnorm
(

1 − p
2

, 0, 1
)

Here, qnorm is the inverse cumulative probability distribution func-
tion for a standard normal distribution (the notation is as in R). The
factor of 2 on the bottom line of Equation (A9) is needed since we are
talking about a two-sided test: see Held and Ott, 2018, eq. 13).

The FPR can be calculated by substituting L10 from Equation (A9)
into Equation (A6). The reverse Bayesian calculation of P(H1) can be
found by substituting this FPR into Equation (A7).

Supplementary Materials

R scripts (and output files) used for calculations and plots are provided as
online supplementary materials.
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